A single point mutation in the listerial betL σA-dependent promoter leads to improved osmo- and chill-tolerance and a morphological shift at elevated osmolarity
نویسندگان
چکیده
Betaine uptake in Listeria monocytogenes is mediated by three independent transport systems, the simplest of which in genetic terms is the secondary transporter BetL. Using a random mutagenesis approach, based on the E. coli XL1 Red mutator strain, we identified a single point mutation in a putative promoter region upstream of the BetL coding region which leads to a significant increase in betL transcript levels under osmo- and chill-stress conditions and a concomitant increase in stress tolerance. Furthermore, the mutation appears to counter the heretofore unreported "twisted" cell morphology observed for L. monocytogenes grown at elevated osmolarities in tryptone soy broth.
منابع مشابه
Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118.
Given the increasing commercial and clinical relevance of probiotic cultures, improving the technological robustness of what are often process-sensitive cultures is an important biological goal. The nisin-controlled expression system was used to direct the heterologous expression of the listerial betaine uptake system BetL in the probiotic strain Lactobacillus salivarius UCC118. Following nisin...
متن کاملMolecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures.
Listeria monocytogenes is a ubiquitous food-borne pathogen found widely distributed in nature as well as an undesirable contaminant in a variety of fresh and processed foods. This ubiquity can be at least partly explained by the ability of the organism to grow at high osmolarity and reduced temperatures, a consequence of its ability to accumulate osmo- and cryoprotective compounds termed osmoly...
متن کاملTranscriptional regulation and posttranslational activity of the betaine transporter BetL in Listeria monocytogenes are controlled by environmental salinity.
While the genetic elements contributing to the salinity tolerance of Listeria monocytogenes have been well characterized, the regulatory signals and responses (genetic and/or biochemical) that govern these mechanisms have yet to be elucidated. Encoded by betL, the first genetic element to be linked to listerial osmotolerance, the secondary betaine uptake system BetL is a member of the betaine-c...
متن کاملIdentification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28.
The trimethylammonium compound glycine betaine (N,N, N-trimethylglycine) can be accumulated to high intracellular concentrations, conferring enhanced osmo- and cryotolerance upon Listeria monocytogenes. We report the identification of betL, a gene encoding a glycine betaine uptake system in L. monocytogenes, isolated by functional complementation of the betaine uptake mutant Escherichia coli MK...
متن کاملRegulation of transcription of compatible solute transporters by the general stress sigma factor, sigmaB, in Listeria monocytogenes.
Listeria monocytogenes is well known for its durable physiological characteristics, which allow the organism to grow at low temperature and pH and high osmolarity. Growth under high osmolarity depends on the accumulation of compatible solutes, among which glycine betaine and carnitine are the preferred solutes for this organism. Three different transport systems, Gbu, BetL, and OpuC, have been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013